
Journal of Power Sources 155 (2006) 239–245

Thin inclusion approach for modelling of heterogeneous
conducting materials

Nikolay Lavrov a, Alevtina Smirnova b,∗, Haluk Gorgun b, Nigel Sammes b

a Davenport University, 4801 Oakman Boulevard, Dearborn, MI 48126, USA
b University of Connecticut, Department of Materials Science and Engineering, Connecticut Global Fuel Center,

44 Weaver Road, Unit 5233, Storrs, CT 06269, USA

Received 31 March 2005; accepted 2 May 2005
Available online 26 July 2005

Abstract

Experimental data show that heterogeneous nanostructure of solid oxide and polymer electrolyte fuel cells could be approximated as an
infinite set of fiber-like or penny-shaped inclusions in a continuous medium. Inclusions can be arranged in a cluster mode and regular or
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andom order. In the newly proposed theoretical model of nanostructured material, the most attention is paid to the small aspect ratio of
tructural elements as well as to some model problems of electrostatics. The proposed integral equation for electric potential caused by the
harge distributed over the single circular or elliptic cylindrical conductor of finite length, as a single unit of a nanostructured material, has
een asymptotically simplified for the small aspect ratio and solved numerically. The result demonstrates that surface density changes slightly
n the middle part of the thin domain and has boundary layers localized near the edges. It is anticipated, that contribution of boundary layer
olution to the surface density is significant and cannot be governed by classic equation for smooth linear charge. The role of the cross-section
hape is also investigated. Proposed approach is sufficiently simple, robust and allows extension to either regular or irregular system of
arious inclusions. This approach can be used for the development of the system of conducting inclusions, which are commonly present in
anostructured materials used for solid oxide and polymer electrolyte fuel cell (PEMFC) materials.

2005 Elsevier B.V. All rights reserved.

eywords: Fuel cell; Gas diffusion medium; Thin conducting inclusion; Charge distribution; Heterogeneous structure

. Introduction

The development of nanostructured and self-assembling
aterials attracted significant attention in various applica-

ions, such as energy storage and energy conversion devices.
owever, the main emphasis of nanoscale studies of nano-
aterials has been made in the synthesis of these materials,

ather than in the area of a rigorous theoretical approach.
hus, some of the existing experimental results, such as

hose related for example to exceptionally high ionic conduc-
ivity of yttria-stabilized zirconia ultrathin films [1] cannot
e explained on the basis of existing mathematical mod-
ls. Mathematical description in correlation with detailed
tructural characterization and information about transport
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E-mail address: alevtina@engr.uconn.edu (A. Smirnova).

properties of these materials could open new opportunities
and significantly extend the area of their application.

A wide variety of nanostructured materials are commonly
used for porous catalyst layers of solid oxide and polymer
electrolyte fuel cells [2–6], self-assembling structures such
as carbon aerogels [7], carbon nanotubes [8], gas diffusion
layers [9,10], and gas separation membranes [11,12]. These
materials can be assumed to be a combination of a series
of conductive inclusions separated by a non-conductive gas
medium.

Various mathematical approaches to heterogeneous struc-
tures have been suggested [13–15]. One of these applies a
straightforward numerical solution of a 3D problem by means
of finite element or boundary element (FE/BE) code. How-
ever, this approach is feasible only in the case of a single
inclusion or a finite number of inclusions and is not robust
when for a structural system of an unlimited number of inclu-
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sions. In the theory of elasticity it has been stated, that singular
perturbation of a domain is one of the most critical issues for
solving this problem numerically. Thus, a direct numerical
technique is not robust when we consider a dynamic process
in the medium with a singular perturbation.

Another widely used approach is based on the repre-
sentative volume concept when “effective” homogeneous
parameters of an heterogeneous material can be derived from
“representative” volume, i.e. cubical domains containing a
finite set of inclusions. This approach to a heterogeneous
material allows one to derive constitutive equations of
heterogeneous medium from obtained properties of the
representative volumes.

The goal of this work was to develop a simple model of a
thin conducting inclusion in a dielectric medium. In future,
a complete theoretical model allowing rigorous predictions
of the properties of nanostructured materials will be created
on the basis of an asymptotic approach to a single conduc-
tive inclusion, proposed in our work. In addition, it should
be emphasized, that the proposed asymptotic approach can
be applied to a dielectric media containing systems of thin
conducting inclusions with various positions, orientations,
dimensions, configurations, curvilinear contours, and prop-
erties.
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Fig. 1. Configuration of the conductor.

constant ε. Charge is assumed to be distributed over the sur-
face (S) of the conductor. Configuration of the conductor is
shown in Fig. 1, where Γ is the mid-line contour (closed
or unclosed), γ the boundary contour of the cross-section
(contour γ can differ from the circle). The unknown surface
density, ρ, of the charge is governed by the classic equation
of electrostatics:

V = 1

4πε

∫∫
S

ρ(x′, y′, z′)dS(x′, y′, z′)√
(x − x′)2 + (y − y′)2 + (z − z′)2

, (2.1.1)

Q =
∫∫

S

ρ(x′, y′, z′) dS(x′, y′, z′). (2.1.2)

Here V stands for the electric potential of the conduc-
tor, x, y, z the Cartesian coordinates, and Q is the total
charge.

Asymptotic analysis of the integral in the right-hand
side of Eq. (2.2.1) has been conducted in potential the-
ory (electrostatics/electrodynamics, acoustics, hydrodynam-
ics, theory of thin aerofoil, and material science/composites)
[3]. In this paper, we apply results obtained in asymp-
totic analysis of singular integrals to specific problem of
electrostatics.

2.2. Axially symmetric problem

c
a
n
c

. Model description

In order to solve the problem of a single cylindrical inclu-
ion, an asymptotic simplification is used with the assumption
hat the aspect ratio (δ) of the inclusion is small, i.e. two
ransversal dimensions are much smaller than the length.
he cross-section may differ from the circle; the electrostatic
harge is distributed over the surface of the conductor. To
erive an equation for the unknown density, the original inte-
ral equation for the potential is asymptotically simplified.
he original 3D problem is decomposed into a combination
f two problems of reduced dimension. The first one is gov-
rned by the integral equation for the unknown linear charge
net charge in the cross-section) over the axis of the conduc-
or. The second one is a 2D electrostatic problem governed by
he integral equation over the boundary contour of the cross-
ection. The derived asymptotic equations for the unknown
ensity are valid at the points located far away from the edges.

In order to determine the charge density near the edge,
he boundary layer equation is derived. Uniform circular and
lliptic cylinders are used as examples. Results for a circular
ylinder correlate well with classic results in the middle part
f the domain; contribution of the boundary layer solution is
ignificant near the ends; influence of cross-section shape is
nvestigated.

.1. Formulation of the electrostatic problem

The perfect conductor with a total electrostatic charge (Q)
s placed into an infinite dielectric medium with dielectric
We consider first the electrostatic problem for a circular
ylinder in the axially symmetrical electrostatic field. We use
n integral equation (2.1.1) and assume that the edge area is
egligible and the surface S means the lateral surface of the
onductor. The density depends upon the axial coordinate z,
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ρ = ρ(z). Eq. (2.1.1) can be rewritten in the form:

V = a

4πε

∫ 2π

0

∫ L

−L

ρ(z′)dz′dϕ√
(z − z′)2 + 4a2 sin2(ϕ/2)

, (2.2.1)

ϕ stands for polar angle.
The unknown surface density is represented as a sum of

the “smooth” part describing the density in the points far
away from the ends, and two boundary layers localized near
the ends z = L and z = −L:

ρ(z) = q
( z

L

)
+ Φ

(
L − z

a

)
+ Φ

(
L + z

a

)
. (2.2.2)

The smooth part is associated with the large scale L of a
change in the variable z; the boundary layers correspond with
the small scale a.

Equation for the smooth part q(s) of the density is
derived using the asymptotic integral equation assuming that
a � L − |z|, a � L, δ = a/L � 1:
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2.2.1. Equation of boundary layer near the edge
After solving Eq. (2.2.3) for the smooth part q(s) of the

density we can calculate density corrected for the bound-
ary layer near the edge z = L. For the reason of sym-
metry, the boundary layer near the opposite edge z = −L
is assumed to be identical. We substitute the representa-
tion ρ(z) = q(z/L) + Φ((L − z)/a) into Eq. (2.2.1) under the
assumption that a contribution of the boundary layer near
the opposite end (z = −L) is negligible near the end z = L
under study. Thus, introducing a new “short” variable,
τ = (L − z)/a, we subtract Eq. (2.2.3) for a smooth part. After
some asymptotic replacements and limit transition δ → 0,
1/δ → ∞ we derive the boundary layer equation in the
form:

∫ ∞

0

∫ 2κ

0

Φ(τ′)√
(τ − τ′)2 + 4 sin2(ϕ/2)

dτ′ dϕ = −q(1)
∫ 2π

0

ϕ sin ϕ dϕ√
τ2 + 4 sin2(ϕ/2)

[
τ +

√
τ2 + 4 sin2(ϕ/2)

] . (2.2.5)

2.3. Elliptic cylinder

Consider a cylindrical conductor with elliptic cross-
section (ellipse γ). Let a and b (b < a) stand for semi-axes
of the ellipse. Parameters a and b are of the same order (the
aspect ratio κ = b/a = O(1) and both are much smaller than
the length 2L(a/L = o(1)). Surface density ρ depends on the
l
a
a
F

γ

dγ(

ϕ′) =(
ϕ −

2

a2 si

F
P

F

2εV

a
=

∫ 1

−1

q(s′) − q(s)

|s − s′| ds′

+ q(s)

[
ln

1 − s2

δ2 − 4

π

∫ π/2

0
ln(sin ϕ)dϕ

]
, (2.2.3)

here s = z/L a new dimensionlesss variable, small terms
(δ ln δ) are neglected. This equation is to be solved together
ith equality (2.1.2) at a given total charge Q. The derived

symptotic equation correlates very well with the classic
quation of Pocklington [4] for a thin cylindrical conductor:

= a

2ε

∫ L

−L

ρ(z′)dz′√
(z − z′)2 + a2

. (2.2.4)

hese equations are asymptotically equivalent, and differ in
he negligible term O(δ ln δ). Eqs. (2.2.3) and (2.2.4) allow
ne to calculate “smooth” density at the points far-away from
he ends. However, smooth density may contain some error
ear the ends of the conductor.

V = 1

4πε

∫

r2 = r2(ϕ,

= 4 sin2

dγ(ϕ′) =
√

ongitudinal coordinate z (associated with “long” scale L)
nd polar angle ϕ within the cross-section. Contour γ , polar
ngle ϕ and Cartesian coordinates x, y, and z are shown in
ig. 2.

Potential equation (2.1.1) can be written in the form:

ϕ′)
∫ L

−L

ρ(ϕ′, z′)√
(z − z′)2 + r2(ϕ, ϕ′)

dz′;

a2(cos ϕ − cos ϕ′)2 + b2(sin ϕ − sin ϕ′)2

ϕ′ ) [
a2 sin2

(
ϕ + ϕ′

2

)
+ b2 cos2

(
ϕ + ϕ′

2

)]
;

n2 ϕ′ + b2 cos2 ϕ′ dϕ′. (2.3.1)

irst, we look for smooth surface density ρ and linear charge
(net charge in the cross-section) as functions of Cartesian

ig. 2. Contour γ , polar angle ϕ, and Cartesian coordinates x, y, and z.
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coordinates x, y, and z:

ρ = q
(x

a
,
y

a
,

z

L

)
;

P = P
( z

L

)
=

∫
γ

ρ

(
x′

a
,
y′

a
,

z

L

)
dy(x′, y′)

=
∫ 2π

0
q

(
cos ϕ′,

b

a
sin ϕ′,

z

L

) √
a2 sin ϕ′+b2 cos ϕ′ dϕ′.

(2.3.2)

Further, we develop combined linear charge (T) including
boundary layers localized near the ends in the form:

T (z) = P
( z

L

)
+ Φ

(
L − z

a

)
+ Φ

(
L + z

a

)
. (2.3.3)

We are seeking the unknown linear charge P(s) distributed
along the z-axis (“smooth” part of solution), and charge
distribution q = q(x/a, y/a, s) over the contour γ (of the cross-
section z = const). Then we analyze linear charge T(z) as a
function of “short scale” coordinate.

2.3.1. Asymptotic equation for the smooth density
First, we substitute this representation (2.3.2) for the den-

sity to Eq. (2.3.1) and derive the asymptotic of potential
V:

4

T
t

T
o

4

T
o

the phenomenon under study. The second equation corre-
sponds with the 2D electrostatic problem of charge distri-
bution in a cylindrical conductor of infinite extent. It has a
shortcoming of being a 2D formulation; 2D does not allow
the evaluation of 3D effects, and of the determination of the
net charge P in the cross-section. Unknown parameter c can
be considered as some “effective” radius of circular cylinder
with the same linear charge P(z/L).

2.3.2. Boundary layer near the edge
After solving Eq. (2.3.6) for the linear charge P(z/L)

and angular distribution Ψ (ϕ) we can calculate the correc-
tion to the linear charge P caused by the boundary layer
near the edge z = L. This boundary layer is constructed
under the assumption of validity of angular distribution
of charge (within the cross-section) everywhere, including
at the vicinity of this edge. We substitute representation
ρ(ϕ,z) = [P(z/L) + Φ((L − z)/a)]Ψ (ϕ) into Eq. (2.3.1). (Con-
tribution of the boundary layer localized near the opposite end
z = −L to the density near the end z = L is negligible.) Then we
incorporate the new “short” variable τ = (L − z)/a and subtract
the first equation (2.3.7) for a smooth part P(z/L) from Eq.
(2.3.1). After some asymptotic replacements and limit transi-
tion δ → 0; 1/δ → ∞ we obtain the boundary layer equation
in the form:∫ 2π ∫ ∞

3

s
i
m
a
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3
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a

p

πεV =
∫ L

−L

P(z′/L) − P(z/L)

|z − z′| dz′ + P
( z

L

)
ln

4(L2−z2)

a2

−
∫

γ

q

(
cos ϕ′,

b

a
sin ϕ′,

z

L

)
ln[(cos ϕ − cos ϕ′)2

+ κ2(sin ϕ − sin ϕ′)2]dγ(ϕ′). (2.3.4)

he structure of Eq. (2.3.4) gives an indication that we have
o seek the density q in the degenerated form:

q

(
cos ϕ,

b

a
sin ϕ,

z

L

)
= Ψ (ϕ)P

( z

L

)
;

∫
γ

Ψ (ϕ′)dγ(ϕ′) = 1. (2.3.5)

hen we substitute (2.3.5) into (2.3.4) and achieve a system
f four equations for four unknowns: P(z/L), Ψ (ϕ), V, and c.

πεV =
∫ L

−L

P(z′/L) − P(z/L)

|z − z′| dz′+P
( z

L

)
ln

4(L2−z2)

c2 ;

2 ln a +
∫

γ

Ψ (ϕ′) ln[(cos ϕ − cos ϕ′)2

+ κ2(sin ϕ − sin ϕ′)2]dγ(ϕ′) = 2 ln c;∫
γ

Ψ (ϕ′)dγ(ϕ′) = 1;
∫ L

−L

P

(
z′

L

)
dz′ = Q. (2.3.6)

hus, separation of variables is completed. The first equation
f the derived system contains information on 3D effects of
0
Ψ (ϕ′)dγ(ϕ′)

0

× Φ(τ′)√
(τ − τ′)2 + (1 − cos ϕ′)2 + κ2(sin ϕ)2

dτ′=P(1)
∫ 2π

0

× Ψ (ϕ′)ln
2τ

τ +
√

τ2 + (1 − cos ϕ′)2 + κ2(sin ϕ′)2
dγ(ϕ′).

(2.3.7)

. Results and discussion

High-resolution images of conductive heterogeneous
tructures are presented in Figs. 3 and 4. The micrographs
ndicate that cylindrical or almost cylindrical fibers are ele-

ents of the structure; the fibers within the structure can be
ssembled in three typical orders: tree-like order (cluster),
haotic order, and regular order. All these orders can be gov-
rned by asymptotic equations over the graph. The graph can
e connected or contain fragments without connection with
he main tree.

.1. Circular cylinder

Equations for the smooth part and the boundary layer
ere solved numerically. Calculated dimensionless density

nd linear charge:

(z) = 2πaLρ(z)

Q
= 2πaLρ(z)∫∫

S
ρ(z′)dS(x′, y′, z′)

(3.1.1)
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Fig. 3. Electrically conducting carbon paper used as a gas diffusion layer in
PEMFCs; inset shows the same material at higher magnification.

Fig. 4. Electrically conducting carbon cloth used as a gas diffusion layer in
PEMFCs; inset shows the same material at higher magnification.

Fig. 5. Charge density calculated from equation of Pocklington at various
aspect ratio (a/L = 0.05; 0.01; 0.001).

Fig. 6. Dimensionless density calculated from asymptotic equation at vari-
ous aspect ratio (a/L = 0.05; 0.01; 0.001).

is presented in Figs. 5–7. Fig. 5 presents the density calcu-
lated from the equation of Pocklington at various aspect ratios
(a/L = 0.005; 0.001; 0.0001). Fig. 6 presents the dimension-
less density calculated from the asymptotic equation (2.2.3)
(without boundary layer) at various aspect ratios (a/L = 0.005;
0.001; 0.0001). Comparison between the linear charge cal-
culated from the equation of Pocklington (dotted line), Eq.
(2.2.3) (solid line), and Eqs. (2.2.3) and (2.2.5) (dashed line)
at a/L = 0.05 is presented in Fig. 7. Calculations indicate
that linear charge in the middle part of the inclusion can
be successfully calculated by means of asymptotic equation
(2.2.3) for smooth density; these results correlate well with
the classic integral equation (2.2.4). Calculations show that
the boundary layer makes a significant contribution near the
ends, and this fast change of density cannot be governed by
the asymptotic equation for smooth density (2.2.3) or the
equation of Pocklington. Results show that the boundary
layer solution allows one to estimate high gradients of linear
charge near the ends of the conductor. Effective zone of the
boundary layer is about two diameters of the conductor.

F
P
(

ig. 7. Comparison between the linear charge calculated from equation of
ocklington (dotted line), Eq. (2.2.3) (solid line), and Eqs. (2.2.3) and (2.2.5)
dashed line) at a/L = 0.05.
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Fig. 8. The smooth linear charge at various aspect radii (a/L = 0.001; 0.0001)
for elliptical cross-section b/a = 2.

3.2. Elliptic cylinder

Equations for the smooth part of the linear charge and
boundary layer were solved numerically, and dimensionless
linear charge P(z/L) (containing smooth part and boundary
layer):

P̄(s) = LP(s)

Q
(3.2.1)

and angular distribution Ψ (ϕ) of charge over the cross-section
boundary contour were calculated. Fig. 8 presents the smooth
linear charge at various aspect ratios (a/L = 0.001; 0.0001)
for elliptical cross-section b/a = 2. Fig. 9 presents the angu-
lar distribution Ψ (ϕ) for ellipses with ratio b/a = 2, 3, and 1
(circle). It should be noted that the classical approximation
of Pocklington does not consider noncircular cross-sections.
The edge effect is shown in Fig. 10 (solid line for smooth
linear charge, dashed line for linear with boundary layer); cal-
culations were conducted for a/L = 0.05 and b/a = 2. Results
show that a high gradient of linear charge near the edge can-
not be estimated without calculation of the boundary layer

F
1

Fig. 10. Edge effect (solid line for smooth linear charge, dashed line for
linear with boundary layer); calculations were conducted for a/L = 0.05 and
b/a = 2.

term. The effective zone of the boundary layer is about two
to three diameters of the conductor.

It should be noted that the 2D approach allows one to
calculate the angular distribution of the electric charge over
the cross-section boundary, but does not allow one to find
the net charge in the cross-section z = const. Linear charge
can be found from a 3D formulation, which can be asymp-
totically transformed to an integral equation over the axis of
the conductor. A similar situation takes place in the analysis
of thin films/thin-walled inclusions. In some specific cases a
1D approach to thin film/inclusion can meet principal trouble
related to finiteness of inclusion in the plane or other rea-
sons. This incorrectness of the boundary value problem of
the reduced dimension sometimes appears to be an artifact.
Correct formulation of the boundary value problem can be
obtained on the basis of a 3D approach. 3D formulation can
take into account the finite size of the inclusion in the plane,
finite curvature of the median surface, non-uniform thickness
effects, and the presence of additional scale parameter (with
dimension of length) associated with the internal structure
of the film. All the above-mentioned reasons make the 1D
formulation insufficient, and requires a more detailed study.
Reduction of dimension in the corresponding boundary value
problem is still possible, but has to be implemented more
thoroughly. Mathematical methods of this kind of reduction
have already been developed in solid mechanics/acoustics.
W
s
i

4

i
t
i

ig. 9. The angular distribution Ψ (ϕ) for ellipses with ratio b/a = 2, 3, and
(circle).
e assume that this advanced asymptotic technique can be
uccessfully applied to the new thin film effects discovered
n [5].

. Conclusion

The electrostatic problem of a single cylindrical conduct-
ng inclusion for a SOFC catalyst layers has been solved using
he asymptotic decomposition for a single rod-like conductor
n a dielectric medium. It was shown that the surface distri-
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bution of the charge can be described by the integral equation
over the mid-line axis for an unknown linear charge and that
this representation is valid at the points far from the ends of
the conductor. In the case of straight or a curvilinear inclu-
sion, the charge distribution near the ends is governed by a
boundary layer equation. This effective technique is suffi-
cient in describing a complex system of various inclusions,
such as gas diffusion or electrode catalyst layers in PEMFCs,
and a large number of non-identical conductors having dif-
ferent lengths, mid-line contours, and cross-section shapes,
which is typical for ceramic electrically conductive porous
materials.

As the next step, this approach will be incorporated in
the complex model of heterogeneous nanostructured mate-
rial containing a regular/irregular system of inclusions, which
will allow the development of novel nanostructured materials.
It has been shown, that derived asymptotic relations are sim-
ple enough and allow extension to heterogeneous medium
associated with the system of inclusions, furthermore, the
required level of accuracy is achieved. It should be empha-
sized, that the proposed novel approach results in prediction
of the properties of heterogeneous material directly, without
additional simplifying physical hypotheses.
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